• Showcase the chronological process of motivation how a person becomes motivated by the actual realization of his desire, using this fully customizable motivation cycle PowerPoint template. You can also use this PPT template to understand the behaviour of a human being.
    Watch Now: https://youtu.be/3OTQhNcXmOM
    Download Now: https://bit.ly/3MLgg5i
    #motivational #powerpointpresentation #presentation #slides #ppt
    Showcase the chronological process of motivation how a person becomes motivated by the actual realization of his desire, using this fully customizable motivation cycle PowerPoint template. You can also use this PPT template to understand the behaviour of a human being. Watch Now: https://youtu.be/3OTQhNcXmOM Download Now: https://bit.ly/3MLgg5i #motivational #powerpointpresentation #presentation #slides #ppt
    0 Kommentare 0 Anteile 269 Ansichten
  • ALEX SOROS FUNDS NEW PSYOP AND CHEMTRAILS, BIRD FLU AND ECONOMIC CRASH AHEAD
    https://www.bitchute.com/video/j0la7FnVzFw4/
    ALEX SOROS FUNDS NEW PSYOP AND CHEMTRAILS, BIRD FLU AND ECONOMIC CRASH AHEAD https://www.bitchute.com/video/j0la7FnVzFw4/
    Like
    1
    0 Kommentare 0 Anteile 261 Ansichten
  • Ryan Carver - Lessons From ‘Star Wars’ on Political Economy:

    https://www.discoursemagazine.com/p/lessons-from-star-wars-on-political

    #StarWarsDay2024 #StarWarsDay #StarWars #MayThe4thBeWithYou #MayTheFourthBeWithYou #MayTheFourth2024 #MayTheFourth #Government #Economics
    Ryan Carver - Lessons From ‘Star Wars’ on Political Economy: https://www.discoursemagazine.com/p/lessons-from-star-wars-on-political #StarWarsDay2024 #StarWarsDay #StarWars #MayThe4thBeWithYou #MayTheFourthBeWithYou #MayTheFourth2024 #MayTheFourth #Government #Economics
    0 Kommentare 0 Anteile 447 Ansichten
  • THE WEF'S (WORLD ECONOMIC FORUM) GREATEST FEAR
    https://www.bitchute.com/video/JBzvSTDbI14d/
    THE WEF'S (WORLD ECONOMIC FORUM) GREATEST FEAR https://www.bitchute.com/video/JBzvSTDbI14d/
    Like
    2
    0 Kommentare 0 Anteile 249 Ansichten
  • Meditação para Iniciantes com Cesar Di Lascio, no episodio #56 do Meditantes PodCast. Apresentação de Domício Shanti-Rham.
    .
    Episódio Completo
    https://www.youtube.com/watch?v=k6EWe166o6Q&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    *CORTES MELHORES MOMENTOS*

    1) 22/04
    Pessoas próximas não aceitavam essa nova jornada
    https://www.youtube.com/watch?v=Vrd9rs529NQ&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    2) 23/04
    Isso tudo é efeito da Meditação
    https://www.youtube.com/watch?v=ppDvL6bsD6A&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    3) 24/04
    Meditação te ajuda a conectar-se com sua Essência
    https://www.youtube.com/watch?v=aX1KkfoNqcs&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    4) 25/04
    O Estado Meditativo é muito similar ao Estado Pré-Sono
    https://www.youtube.com/watch?v=cJRFgEa1eFA&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    5) 26/04
    A Prática da Meditação promove Melhorias Fisiológicas
    https://www.youtube.com/watch?v=qZuHfuF6av8&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    6) 27/04
    Meditação é Estado de Presença Total e Absoluto
    https://www.youtube.com/watch?v=fvSdw5z2sSI&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    7) 28/04
    Meditação Estado de Presença com Cesar Di Lascio
    https://www.youtube.com/watch?v=0e_AxDVKUXE&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    Playlist do Episodio:
    http://meditantes.com.br/podcast/56

    Acesse, assista, ouça, aproveite, curte, comenta, compartilha...

    #meditação #meditation #meditación #meditante #meditantes #meditantespodcast #podcast #aovivo #online #viral #shantirham #meditar #medite #meditativo
    Meditação para Iniciantes com Cesar Di Lascio, no episodio #56 do Meditantes PodCast. Apresentação de Domício Shanti-Rham. . Episódio Completo 👇 https://www.youtube.com/watch?v=k6EWe166o6Q&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM *CORTES MELHORES MOMENTOS* 1) 22/04 Pessoas próximas não aceitavam essa nova jornada https://www.youtube.com/watch?v=Vrd9rs529NQ&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 2) 23/04 Isso tudo é efeito da Meditação https://www.youtube.com/watch?v=ppDvL6bsD6A&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 3) 24/04 Meditação te ajuda a conectar-se com sua Essência https://www.youtube.com/watch?v=aX1KkfoNqcs&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 4) 25/04 O Estado Meditativo é muito similar ao Estado Pré-Sono https://www.youtube.com/watch?v=cJRFgEa1eFA&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 5) 26/04 A Prática da Meditação promove Melhorias Fisiológicas https://www.youtube.com/watch?v=qZuHfuF6av8&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 6) 27/04 Meditação é Estado de Presença Total e Absoluto https://www.youtube.com/watch?v=fvSdw5z2sSI&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM 7) 28/04 Meditação Estado de Presença com Cesar Di Lascio https://www.youtube.com/watch?v=0e_AxDVKUXE&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM Playlist do Episodio: 👇 http://meditantes.com.br/podcast/56 Acesse, assista, ouça, aproveite, curte, comenta, compartilha... #meditação #meditation #meditación #meditante #meditantes #meditantespodcast #podcast #aovivo #online #viral #shantirham #meditar #medite #meditativo
    0 Kommentare 0 Anteile 1989 Ansichten
  • O Estado Meditativo é muito similar ao Estado Pré-Sono
    https://www.youtube.com/watch?v=cJRFgEa1eFA&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM

    Playlist do Episodio:
    http://meditantes.com.br/podcast/55

    Acesse, assista, ouça, aproveite, curte, comenta, compartilha...

    #meditação #meditation #meditación #meditante #meditantes #meditantespodcast #podcast #aovivo #online #viral #shantirham #meditar #medite #meditativo
    O Estado Meditativo é muito similar ao Estado Pré-Sono https://www.youtube.com/watch?v=cJRFgEa1eFA&list=PLjXLCSmO7rtrQrthMpi7dKy4-Z7uhXozM Playlist do Episodio: 👇 http://meditantes.com.br/podcast/55 Acesse, assista, ouça, aproveite, curte, comenta, compartilha... #meditação #meditation #meditación #meditante #meditantes #meditantespodcast #podcast #aovivo #online #viral #shantirham #meditar #medite #meditativo
    0 Kommentare 0 Anteile 1626 Ansichten
  • Ray Villard - Hubble Celebrates 34th Anniversary with a Look at the Little Dumbbell Nebula:

    https://hubblesite.org/contents/news-releases/2024/news-2024-013

    #Hubble #Telescope #HST #LittleDumbbellNebula #M76 #PlanetaryNebula #WhiteDwarf #Astrophotography #Astrophysics #Astronomy
    Ray Villard - Hubble Celebrates 34th Anniversary with a Look at the Little Dumbbell Nebula: https://hubblesite.org/contents/news-releases/2024/news-2024-013 #Hubble #Telescope #HST #LittleDumbbellNebula #M76 #PlanetaryNebula #WhiteDwarf #Astrophotography #Astrophysics #Astronomy
    Love
    1
    1 Kommentare 0 Anteile 1750 Ansichten
  • https://writinganessay.org/2024/04/10/the-impact-of-climate-change-on-the-economy-of-south-africa-essay/
    https://writinganessay.org/2024/04/10/the-impact-of-climate-change-on-the-economy-of-south-africa-essay/
    0 Kommentare 0 Anteile 727 Ansichten
  • I experienced the Great American Eclipse under some clouds that rolled in, as is typical for astronomical events, during the moment of maximum eclipse. The birds stopped singing except for one squawking bird in a tall tree, the squirrels went home, the color of the ambient light changed from orange to blue as it would in the evening, the shadows on the ground became softer, the wind speed increased and the temperature cooled. It was eerily quiet for a few minutes before the normal activity returned with the unveiled sunlight; several sunspots were visible during this April 8th solar eclipse.

    #Supermoon #Moon #Shadow #PacMan #Crescent #SunSpots #Sun #SolarEclipse2024 #SolarEclipse #Eclipse #Astronomy
    I experienced the Great American Eclipse under some clouds that rolled in, as is typical for astronomical events, during the moment of maximum eclipse. The birds stopped singing except for one squawking bird in a tall tree, the squirrels went home, the color of the ambient light changed from orange to blue as it would in the evening, the shadows on the ground became softer, the wind speed increased and the temperature cooled. It was eerily quiet for a few minutes before the normal activity returned with the unveiled sunlight; several sunspots were visible during this April 8th solar eclipse. #Supermoon #Moon #Shadow #PacMan #Crescent #SunSpots #Sun #SolarEclipse2024 #SolarEclipse #Eclipse #Astronomy
    Love
    1
    0 Kommentare 0 Anteile 3932 Ansichten
  • Showcase the chronological process of motivation how a person becomes motivated by the actual realization of his desire, using this fully customizable motivation cycle PowerPoint template. You can also use this PPT template to understand the behaviour of a human being. Download Now: https://bit.ly/3MLgg5i
    #powerpointpresentation #powerpointtemplates #ppt #presentation #slide
    Showcase the chronological process of motivation how a person becomes motivated by the actual realization of his desire, using this fully customizable motivation cycle PowerPoint template. You can also use this PPT template to understand the behaviour of a human being. Download Now: https://bit.ly/3MLgg5i #powerpointpresentation #powerpointtemplates #ppt #presentation #slide
    BIT.LY
    Motivation Cycle PowerPoint Template | PPT Templates
    Features: Widescreen 16:9 You can change the color of the icons You can change the size, color and orientation of the shape Replace the text as per your need Replace an image as per your requirement
    0 Kommentare 0 Anteile 1418 Ansichten
  • The President of the ICJ Joan E. Donoghue was a legal advisor to Secretary of State Hillary Clinton under the Obama administration. Joan Donoghue takes her instructions from Washington.

    Moreover, the conduct of the genocide is a joint Israel-US endeavor with US forces involved in Israel’s combat units.

    Nobody in the media nor in the peace movement has underscored the fact that the President of the ICJ is de facto in “conflict of interest”.

    “The anger of the World has been pacified for a while with the false celebration of a fake “victory” at The Hague. The US chief judge at ICJ must be laughing.

    Israel’s genocide will continue while the US and its chief justice at the ICJ keep the world at bay for very long with new false words and delaying actions.” (Karsten Riise, Global Research emphasis added)


    http://donshafi911.blogspot.com/2024/04/fake-justice-at-hague-icj-appoints.html https://donshafi911.blogspot.com/2024/04/fake-justice-at-hague-icj-appoints.html?m=1
    The President of the ICJ Joan E. Donoghue was a legal advisor to Secretary of State Hillary Clinton under the Obama administration. Joan Donoghue takes her instructions from Washington. Moreover, the conduct of the genocide is a joint Israel-US endeavor with US forces involved in Israel’s combat units. Nobody in the media nor in the peace movement has underscored the fact that the President of the ICJ is de facto in “conflict of interest”. “The anger of the World has been pacified for a while with the false celebration of a fake “victory” at The Hague. The US chief judge at ICJ must be laughing. Israel’s genocide will continue while the US and its chief justice at the ICJ keep the world at bay for very long with new false words and delaying actions.” (Karsten Riise, Global Research emphasis added) http://donshafi911.blogspot.com/2024/04/fake-justice-at-hague-icj-appoints.html https://donshafi911.blogspot.com/2024/04/fake-justice-at-hague-icj-appoints.html?m=1
    Like
    1
    0 Kommentare 0 Anteile 3930 Ansichten
  • The emergence of nanobot society
    OUTRAGED HUMAN













    So, they injected it into the military, police, emergency services.... Now everyone is injected with a device with a "real IP ADDRESS"....






    0:00

    Thank you very much. So one word of notice before we begin,

    0:03

    all the technologies that you are going to see here now are real.

    0:06

    And with that said

    0:07

    I'd like to first tell you the story about

    0:10

    this uh... little girl named Dana

    0:12

    she's very special for me because she's my daugther

    0:14

    and Dana was born with a leg condition requiring frequent surgeries like this one

    0:19

    uh... she had when we were in Boston

    0:21

    and um... I remember taking her to that particular surgery

    0:25

    and uh...

    0:26

    I rembember her being admitted and she was excited at first

    0:31

    and then just before they got into her the OR

    0:33

    I looked at her and she was... afraid, she was little worried and

    0:38

    who wouldn't be? Because surgeries today are complicated

    0:41

    and they're often very risky.

    0:42

    Now let's imagine a few years into the future, into the near future hopefully,

    0:47

    Dana will arrive to hospital for her ??? surgery

    0:50

    and instead of being prepped for anesthesia for the OR

    0:54

    the surgeon will just take a syringe and inside the syringe

    0:58

    there are millions of tiny robots, of tiny machines

    1:02

    that will be injected into Dana's bloodstream.

    1:04

    They will autonomously locate the place they need to be in,

    1:08

    they will excite out the injured tissue,

    1:11

    then will remove dead cells,

    1:13

    then they will...

    1:14

    stimulate and guide the regrowth of healthy cells across those tissue gaps,

    1:18

    they will release drugs that relief pain and reduce inflammation

    1:23

    and all the while Dana will be sitting on the chair

    1:25

    eating a sandwich, reading a book, might be the next

    1:28

    twilight saga book which she'll be able to read because she will be 16 by then

    1:32

    And...(giggles)

    1:33

    uh... when these robots

    1:35

    have completed their job they'll simply disintegrate

    1:39

    and disappear from her bloodstream the next day.

    1:42

    So these nanobots have been envisioned in the past 30 years

    1:45

    by people like Eric Drexler, Robert Freitas and Ray Kuzweil.

    1:49

    Today I'm going to show you that these robots exist

    1:51

    here in Israel.

    1:54

    I'll show you this syringe

    1:56

    which I've brought from my lab.

    1:58

    So this syringe has inside it a thousand billion robots.

    2:03

    So these robots are each fifty nanometers

    2:06

    long as you can see in this slide under the microscope.

    2:11

    Fifty nanometers is about 2000 times thinner than the thickness of your hair

    2:16

    OK? And... umm... These robots were born actually 3 years ago

    2:20

    in a research I did with Shawn Douglas, now a UCSF Professor.

    2:24

    But over the past year and a half

    2:25

    in my group at Bar-Ilan University

    2:27

    We've been developing and testing robots for a variety of

    2:31

    medical and therapeutic tasks.

    2:33

    We've invented ways of making them safe for use

    2:37

    and non-inmunogenic

    2:38

    and we learned how to tune their stability in our bloodstream

    2:41

    to fit either short-term or long-term

    2:44

    even days long medical procedures.

    2:47

    So to carry out medical and therapeutic procedures in our body

    2:50

    with the upmost precision,

    2:51

    we need to be able to control molecules

    2:53

    Controlling molecules is a very simple challenge

    2:56

    in modern scientific knowledge.

    2:58

    OK? Let's speak for example about the class of molecules we know as drugs

    3:02

    So despite...

    3:04

    amazing progress made in the past four decades

    3:06

    the way we think about drugs and we the way we use drugs

    3:09

    has been essentially unchanged

    3:11

    and it's similar as two hundred years ago

    3:14

    right? You hear about about big pharmaceutical companies

    3:17

    spending huge amounts of money

    3:19

    searching for better, safer drugs.

    3:22

    Attempts that usually fail.

    3:24

    OK? but,

    3:25

    searching for let's say a safer cancer drug,

    3:28

    half it is a concept that has a flaw in it.

    3:30

    Because searching for a safer cancer drug

    3:32

    is basically like searching for a gun that kills only bad people

    3:36

    We don't search for such guns,

    3:37

    what we do is training soldiers to use that gun properly

    3:42

    Of course in drugs we can't do this because it seems very hard

    3:45

    But there are things we can do with drugs

    3:47

    for example, we can put the drugs

    3:49

    in particles from which they difuse slowly.

    3:51

    We can attach a drug to a carrier

    3:54

    which takes someplace but, this is not real control.

    3:57

    When we were thinking about control we're thinking about

    4:00

    processes is the real world around us

    4:02

    and what happens when we want to control a process

    4:06

    that's beyond our capabilities as humans

    4:08

    we just connect this process to a computer

    4:10

    and let the computer control this process for us.

    4:13

    OK? So that's what we do.

    4:15

    But obviously this cannot be done with drugs because

    4:19

    the drugs are so much smaller than the computers as we know them

    4:23

    The computer is in fact so much bigger

    4:25

    it's about a hundred million times bigger that any drug molecule.

    4:28

    Our nanobots which were in the syringe

    4:31

    solve this problem because they are in fact

    4:34

    computers the size of molecules.

    4:36

    and they can interact with molecules

    4:38

    and they can control molecules directly,

    4:40

    so just think about all those

    4:42

    drugs that have been withdrawn from the market

    4:45

    for excessive toxicity

    4:46

    right?

    4:47

    It doesn't mean that they are not effective,

    4:49

    they were amazingly effective,

    4:51

    they were just guns shooting in all directions

    4:53

    but in the hands of a well-trained soldier

    4:56

    or a well-programed nanobot

    4:58

    using all the existing drugs

    5:01

    we could hypothetically kill almost any disease.

    5:05

    So we might not need even new drugs.

    5:07

    We have amazing drugs already,

    5:09

    we just don't know how to control them, this is the problem

    5:11

    and our nanobots...

    5:13

    hopefully solve this problem and I'll show you how.

    5:15

    So there is an interesting question "how do we build

    5:19

    a robot or a machine the size of a molecule?"

    5:21

    so the simple answer would be: we can use molecules

    5:25

    to build this machine.

    5:26

    So we're using molecules, but we're not using just any molecule.

    5:30

    We're using the perfect, most beautiful molecule on earth, at least in my opinion,

    5:34

    which is DNA.

    5:36

    And in fact every part of the robot,

    5:38

    every part of out nanorobots:

    5:40

    Moving parts, axis, locks, chasis, software,

    5:44

    everything is made from DNA molecules.

    5:46

    And the techonology that enables us to do this

    5:49

    originated thirty years ago when the pioneering works of Nadrian Seeman,

    5:52

    culminating 7 years ago in the works of Paul Rothemund from Caltech,

    5:56

    which was also featured in TED,

    5:58

    and it's called DNA origami.

    5:59

    Now in DNA origami we do not use a piece of paper,

    6:02

    we use a single long strand of DNA

    6:05

    and we fold it into virtually any shape we want.

    6:08

    For example these shapes, so these are actual microscopic images

    6:12

    of shapes the size of molecules that were folded from DNA.

    6:16

    so the smiley you see here in the center of the screen for example

    6:19

    are a hundred nanometers in size

    6:21

    and we make billions of them in few... in a single reaction.

    6:24

    Now since 2006 several researchers, really talented ones,

    6:28

    have been expanding the limits of the technically feasible in DNA origami

    6:32

    and now we have an astonishig array of shapes and objects which we can build

    6:35

    using this technique.

    6:36

    And these researchers also gave us computer-aided design tools

    6:41

    that enable everyone

    6:43

    very very simply to design objects from DNA

    6:46

    So these CAD tools amazingly

    6:49

    enable us to focus o n the shape we want

    6:52

    forgetting the fact that these structures are in fact assemblies of molecules.

    6:57

    so this is for example a shape the computer can actually turn into DNA molecules.

    7:02

    and the output of this CAD software, as you can see,

    7:05

    is a spreadsheet with fragments of DNA

    7:08

    which you can attach to a message and send to a company

    7:11

    one of two dozen companies that make DNA by order and you'll get those DNA's

    7:16

    several days later to your doorstep

    7:18

    and when you get them all you need to do is just mix them in a certain way

    7:23

    and these molecular bricks will self-assemble into

    7:26

    millions of copies of the very structure that you designed using that CAD software

    7:30

    which is free by the way, you can download it for free.

    7:34

    So, let's have a look at our nanorobots.

    7:38

    So, this is how the nanorobots look like, it's built from DNA as you can see

    7:42

    And it resembles a clam shell in which you can put cargo

    7:45

    You can load anything you want starting from small molecules, drugs,

    7:49

    proteines, enzymes, even nano-particles. Virtually any function

    7:54

    that molecules can carry out, can be loaded into the nanobot

    7:57

    and the nanobot can be programmed to turn on and off

    8:01

    these functions at certain places and at certain times

    8:05

    this is how we control those molecules

    8:07

    and so this particular nanorobot is in an off state, it's closed,it's securely

    8:12

    sequestres anything, any payload you put inside

    8:16

    so it's not accessible to the outside of the robot,

    8:18

    for example, it cannot engage target cells or target tissues

    8:22

    But we can program the nanobot to switch to an on state

    8:26

    based on molecular cues it finds from the environment

    8:30

    so programming the robot is virtually like assemblying a combination lock

    8:34

    using disks that recognize digits,

    8:37

    but of course instead of digits we are assemblying disks that recognize molecules.

    8:42

    So these robots can turn from off to on and when they do

    8:47

    any cargo inside is now accessible,

    8:49

    it can attack target cells or target tissues

    8:52

    or other robots which you'll see later on.

    8:54

    And so we have robots that can switch from off to on

    8:58

    and off again, we can control their kinetics of transition.

    9:02

    We can control which payload becomes accessible at which time point

    9:05

    Let's see an example how these robots for example control a cancer drug

    9:12

    So what you can do is you can take nanobots,

    9:14

    you can put the nastiest cancer drug you may find

    9:17

    into the robots, even a cancer drug

    9:19

    that's been withdrawn because of excessive toxicity

    9:23

    Ok? When the robot is locked

    9:25

    and you put them in your mixture of healthy cells and tumor cells

    9:29

    nothing happens, no cell is affected, because the robot

    9:32

    safely sequesters those drugs inside.

    9:35

    When we unlock the robots

    9:37

    all cells die because the cargo inside the [robot] attacks anything on sight.

    9:42

    So all cells eventually die. In this case this is a fluorescent molecule

    9:46

    to help us see better the output.

    9:48

    But when we program the nanobots to search for tumor cells particulary,

    9:53

    so only the tumor cells

    9:56

    uh... only the tumor cells die because

    9:59

    the robot doesn't care about the bystander cells, about the healthy cells.

    10:04

    So it does not harm them at all.

    10:06

    And we have nanorobots in our lab that can target

    10:09

    about ten types of cancer already and other cell targets

    10:12

    and my team keeps expanding this range monthly.

    10:17

    So these are nanorobots and to another topic

    10:22

    organisms in nature, like bacteria and animals

    10:26

    have learned very early in evolution that working in a coordinated group

    10:29

    conveys advantage

    10:31

    and capabilities beyond those of the individual

    10:34

    and since we are interested in

    10:36

    very complex medical procedures, very complex therapeutic settings,

    10:40

    we're wondering what we could do

    10:42

    if we could engineer artificial swarm behaviors

    10:46

    into our nanobots as well so we could have extraordinarily large groups of nanobots

    10:51

    Can we teach them to behave like animals, like insects

    10:55

    and how do you do this? So the question is interesting.

    10:58

    So you could think one way to do it would be

    11:01

    to look at a natural swarm like this one of fish

    11:04

    and simulate the dynamics of the entire swarm and then try to write the codes

    11:09

    in molecules of course

    11:10

    that mimic the same behaviour

    11:12

    this is virtually impossible, it's impractical

    11:15

    what we do is we take the single fish or a single nanobot in our case

    11:20

    and you design a very basic set of interaction rules

    11:23

    and then you take this one, this nanobot, you make a billion copies of it

    11:27

    and you let the behaviours emerge from that group

    11:31

    let me show you some examples of the things we can already do

    11:35

    for example, just as ants

    11:38

    can shake hands and form physical bridges between two trees

    11:42

    or two remote parts of the same tree,

    11:44

    we already have nanorobots that can reach out for each other

    11:47

    touch each other and shake hands in such a way

    11:49

    they form physical bridges.

    11:51

    Then you can imagine these robots

    11:53

    extending, making bridges extending from one-half

    11:56

    to the other half of an injured tissue,

    11:58

    an injured spinal cord for example

    12:00

    or an injured leg in the case of Dana, my daughter

    12:03

    and once they stretched over that tissue gap

    12:06

    they can apply growth factors, as payloads, and those growth factors

    12:10

    stimulate the re-growth and guide re-growth of cells across the gap.

    12:14

    So we already did that and...

    12:17

    we have robots that can cross regulate each other just like animals do in groups

    12:21

    and this is amazing because as you can see here

    12:24

    you can have two types of robots, Type-A and Type-B

    12:28

    they can cross regulate each other, such that "A" is active

    12:32

    while "B" is not and viceversa.

    12:34

    So this is good for combination therapy

    12:36

    with combination therapy we take multiple drugs, right?

    12:39

    and sometimes two or more of these drugs

    12:41

    can collide and generate side effects,

    12:43

    but here you can put one drug here, one drug here

    12:46

    and the robots will time the activities so that

    12:49

    one drug is active, the other is not and then they can switch

    12:52

    and so two or more drugs can operate at the same time without actually colliding.

    12:57

    Another example that we did is the quorum sensing.

    13:00

    Now quorum sensing is great, it's a bacterial inspired behaviour

    13:05

    It means nanorobots can count themselves

    13:08

    and they can switch to "on" only when reaching a certain population size

    13:12

    this is a mechanism invented by bacteria in evolution

    13:15

    and they regulate amazing behaviours based on just their population density

    13:18

    for example, bioluminescence, this one of the well-studied examples

    13:23

    so our robots can count themselves and switch to on

    13:26

    only when reaching a certain population size which we can program.

    13:29

    This is great because this is a mechanism of programming a drug

    13:33

    to become active only when reaching a certain dose

    13:36

    around the target, regardless of its inherent dose-response curve.

    13:41

    One last I'm gonna show to you is computing,

    13:43

    so this nanobots can do computing.

    13:45

    How's so? If you think about your computer at home,

    13:48

    the processor of the computer is in fact a gigantic swarm of transistors

    13:53

    In an i7 core for example you have 800 million transistors approximately

    13:58

    and they're set to interact in certain ways to produce logic gates

    14:02

    and these logic gates are set to interact to produce computations

    14:05

    so we can also produce computation by setting interactions between nanorobots

    14:10

    to emulate logic gates like you see here

    14:13

    and they form chains and they form pairs

    14:15

    and my team in Bar-Ilan University [has] already developed several architectures

    14:19

    of computing based on interacting nanorobots

    14:22

    and to prototype these

    14:24

    we are using animals, very interesting animals

    14:27

    these are cockroaches,

    14:28

    they are very easy to work with, the're very sweet,

    14:30

    they're actually from South America

    14:32

    and I'm a Soutamerican myself so I fell kinda related

    14:35

    [Laughter]

    14:36

    And hum... so what we do is we inject those robots into the cockroach

    14:40

    and to do that we of course had to put the cockroaches to sleep

    14:43

    have you ever tried putting cockroach to sleep?

    14:46

    We put in the freezer for seven minutes

    14:48

    in they fall asleep

    14:49

    and we can inject these nanorobots inside

    14:52

    and after 20 minutes they start running around, they're happy.

    14:55

    And those robots

    14:57

    while they're doing this, the robots read molecules

    14:59

    from the cockroaches' inputs

    15:01

    and they write their outputs in the form of drugs

    15:04

    activated on those cockroaches' cells

    15:06

    so we can do, we can see that and we already have, as you can see,

    15:09

    architectures of interecting nanorobots that can emulate logical operators

    15:14

    and you can use these as modular parts to build any type universal computer you want

    15:19

    [....]

    15:21

    that can control multiple drugs simultaneously

    15:25

    as a result of biocomputing, this is real universal computing in a living animal.

    15:30

    Now we already have systems that have [the] computing capacity

    15:33

    of an 8-bit computer like Commodore 64.

    15:36

    To make sure we don't lose control over the nanobots after they're injected

    15:40

    my team [has] developed nanorobots that carry antennae

    15:44

    these antennae are made from metal nano-particles.

    15:47

    Now, the antennae enable the nanobots

    15:49

    to respond to externally applied electromagnetic fields

    15:52

    so these nanorobots, this version of nanobots

    15:55

    can actually be activated with a press of a button on a joystick

    15:58

    or for example using a controller

    16:01

    such as the Xbox or Wii if you ever had the chance of playing with those

    16:05

    and you can see one of my students in the lab configuring an Xbox app

    16:09

    to control nanobots.

    16:11

    For example you can imagine nanorobots being injected

    16:14

    to Dana, my daughter for example,

    16:16

    and the doctor can guide those robots

    16:19

    into the site, into the leg and just activate them with a hand gesture.

    16:23

    And you can already see an example where we actually took

    16:26

    cancer cells and loaded robots with cancer drugs

    16:29

    and activated the drug by a hand gesture.

    16:31

    and we can actually kill cancer cells just by doing this,

    16:34

    as you can see here.

    16:36

    And the interesting thing is that

    16:39

    because the controller like the Xbox is connected to the internet,

    16:44

    the controller actually links those nanobots to the network

    16:47

    so they have an actual IP address

    16:49

    and they can be accessed from a remote device sitting on the same network,

    16:53

    for example, my doctor's smartphone

    16:55

    So, OK?, just like controlling a controller, this can be done.

    17:00

    The last thing I'm gonna show is, if you look at our body

    17:04

    you'll see that every cell type, every organ, every tissue

    17:08

    has their own unique molecular signature

    17:11

    and this is equivalent to a physical IP address made of molecules

    17:15

    and if you know these molecules

    17:17

    you can use those nanobots to browse the Organism Wide Web, as we call it

    17:21

    and you can program them to look for bits,

    17:23

    this could be for example signally molecules between cells,

    17:26

    and either fetch them for diagnostics

    17:28

    or carry them to different addresses.

    17:30

    And we already have robots that can hijack

    17:33

    signals between cells

    17:34

    and manipulate an entire network of communications between cells

    17:37

    and this is great for controlling very complex diseases in which many cell types

    17:43

    communicate and orchestrate to perpetuate a disease.

    17:46

    So before I finish I'd just like to thank

    17:50

    my amazing team at Bar-Ilan University

    17:52

    and all the colleagues that took part in this extraordinary journey,

    17:55

    starting from the George Chuch's Lab in Harvard

    17:57

    and ending today in Bar-Ilan University in the new Faculty of Life Sciences,

    18:01

    and I really hope that

    18:03

    anywhere between a year and five years from now

    18:06

    we'll be able to use this in humans

    18:08

    and finally witness the emergence of nanobot society.

    18:11

    Thank you very much.


    https://www.digitaltrends.com/cool-tech/nanobots-live-cockroach-thought-control/





    https://www.digitaltrends.com/cool-tech/nanobots-live-cockroach-thought-control/

    https://www.timesofisrael.com/israeli-scientists-use-nanobots-and-thoughts-to-administer-drugs/


    Israeli scientists say they have come up with a way for brain power to control when drugs are released into the body, by using tiny robots made out of DNA to deliver the medication internally.

    Researchers at the Interdisciplinary Center in Herzliya and Bar-Ilan University in Ramat Gan have built the nanobots to which medication is attached and then are injected into the body. The nanobots have a “gate” that opens or closes — thereby controlling drug release — depending on brain activity.

    In order to achieve this, the New Scientist magazine said, the researchers developed a computer algorithm that could tell whether a person’s brain was resting or carrying out some form of mental activity, such as math problems. A fluorescent-tinted drug was then added to the nanobots, which were injected into a cockroach placed inside an electromagnetic coil.

    Israeli scientists say they have come up with a way for brain power to control when drugs are released into the body, by using tiny robots made out of DNA to deliver the medication internally.

    This coil was then connected to an EEG cap worn by a person asked to perform mental calculations. The computer recognized increased brain activity by the cap wearer, which triggered the “gate” on the nanobots inside the cockroach, releasing the fluorescent drug that was visible as it spread through the insect’s body.

    The idea is to use the delivery system for people with mental health issues, which are sometimes triggered before sufferers are aware they need medication.

    By monitoring brain activity, the nanobots could deliver the required preventative drugs automatically,

    for example before a violent episode of schizophrenia.

    https://www.newscientist.com/article/2102463-mind-controlled-nanobots-could-release-drugs-inside-your-brain/


    The group has built nanorobots out of DNA, forming shell-like shapes that drugs can be tethered to. The bots also have a gate, which has a lock made from iron oxide nanoparticles. The lock opens when heated using electromagnetic energy, exposing the drug to the environment. Because the drug remains tethered to the DNA parcel, a body’s exposure to the drug can be controlled by closing and opening the gate.

    By examining when fluorescence appeared inside different cockroaches, the team confirmed that this worked.

    The idea would be to automatically trigger the release of a drug when it is needed. For example, some people don’t always know when they need medication – before a violent episode of schizophrenia, for instance. If an EEG could detect it was coming, it could stimulate the release of a preventative drug.

    https://www.youtube.com/watch?v=BxJPceCV51g Nanobots Successfully Used on Living Animal for the First Time - IGN News

    0:38

    to treat human ailments or weaponized

    0:40

    hijacked by a snake themed terrorist

    0:42

    organization and then used to destroy

    0:43

    Paris but I suppose it's only a matter

    0:45

    of time


    “This syringe has inside it a thousand billion robots.”

    https://outraged.substack.com/p/the-emergence-of-nanobot-society?utm_source=cross-post&publication_id=1087020&post_id=143145132&utm_campaign=956088&isFreemail=true&r=1sq9d8&triedRedirect=true&utm_medium=email

    Follow @zeeemedia
    Website | X | Instagram | Rumble

    https://donshafi911.blogspot.com/2024/04/the-emergence-of-nanobot-society.html
    The emergence of nanobot society OUTRAGED HUMAN So, they injected it into the military, police, emergency services.... Now everyone is injected with a device with a "real IP ADDRESS".... 0:00 Thank you very much. So one word of notice before we begin, 0:03 all the technologies that you are going to see here now are real. 0:06 And with that said 0:07 I'd like to first tell you the story about 0:10 this uh... little girl named Dana 0:12 she's very special for me because she's my daugther 0:14 and Dana was born with a leg condition requiring frequent surgeries like this one 0:19 uh... she had when we were in Boston 0:21 and um... I remember taking her to that particular surgery 0:25 and uh... 0:26 I rembember her being admitted and she was excited at first 0:31 and then just before they got into her the OR 0:33 I looked at her and she was... afraid, she was little worried and 0:38 who wouldn't be? Because surgeries today are complicated 0:41 and they're often very risky. 0:42 Now let's imagine a few years into the future, into the near future hopefully, 0:47 Dana will arrive to hospital for her ??? surgery 0:50 and instead of being prepped for anesthesia for the OR 0:54 the surgeon will just take a syringe and inside the syringe 0:58 there are millions of tiny robots, of tiny machines 1:02 that will be injected into Dana's bloodstream. 1:04 They will autonomously locate the place they need to be in, 1:08 they will excite out the injured tissue, 1:11 then will remove dead cells, 1:13 then they will... 1:14 stimulate and guide the regrowth of healthy cells across those tissue gaps, 1:18 they will release drugs that relief pain and reduce inflammation 1:23 and all the while Dana will be sitting on the chair 1:25 eating a sandwich, reading a book, might be the next 1:28 twilight saga book which she'll be able to read because she will be 16 by then 1:32 And...(giggles) 1:33 uh... when these robots 1:35 have completed their job they'll simply disintegrate 1:39 and disappear from her bloodstream the next day. 1:42 So these nanobots have been envisioned in the past 30 years 1:45 by people like Eric Drexler, Robert Freitas and Ray Kuzweil. 1:49 Today I'm going to show you that these robots exist 1:51 here in Israel. 1:54 I'll show you this syringe 1:56 which I've brought from my lab. 1:58 So this syringe has inside it a thousand billion robots. 2:03 So these robots are each fifty nanometers 2:06 long as you can see in this slide under the microscope. 2:11 Fifty nanometers is about 2000 times thinner than the thickness of your hair 2:16 OK? And... umm... These robots were born actually 3 years ago 2:20 in a research I did with Shawn Douglas, now a UCSF Professor. 2:24 But over the past year and a half 2:25 in my group at Bar-Ilan University 2:27 We've been developing and testing robots for a variety of 2:31 medical and therapeutic tasks. 2:33 We've invented ways of making them safe for use 2:37 and non-inmunogenic 2:38 and we learned how to tune their stability in our bloodstream 2:41 to fit either short-term or long-term 2:44 even days long medical procedures. 2:47 So to carry out medical and therapeutic procedures in our body 2:50 with the upmost precision, 2:51 we need to be able to control molecules 2:53 Controlling molecules is a very simple challenge 2:56 in modern scientific knowledge. 2:58 OK? Let's speak for example about the class of molecules we know as drugs 3:02 So despite... 3:04 amazing progress made in the past four decades 3:06 the way we think about drugs and we the way we use drugs 3:09 has been essentially unchanged 3:11 and it's similar as two hundred years ago 3:14 right? You hear about about big pharmaceutical companies 3:17 spending huge amounts of money 3:19 searching for better, safer drugs. 3:22 Attempts that usually fail. 3:24 OK? but, 3:25 searching for let's say a safer cancer drug, 3:28 half it is a concept that has a flaw in it. 3:30 Because searching for a safer cancer drug 3:32 is basically like searching for a gun that kills only bad people 3:36 We don't search for such guns, 3:37 what we do is training soldiers to use that gun properly 3:42 Of course in drugs we can't do this because it seems very hard 3:45 But there are things we can do with drugs 3:47 for example, we can put the drugs 3:49 in particles from which they difuse slowly. 3:51 We can attach a drug to a carrier 3:54 which takes someplace but, this is not real control. 3:57 When we were thinking about control we're thinking about 4:00 processes is the real world around us 4:02 and what happens when we want to control a process 4:06 that's beyond our capabilities as humans 4:08 we just connect this process to a computer 4:10 and let the computer control this process for us. 4:13 OK? So that's what we do. 4:15 But obviously this cannot be done with drugs because 4:19 the drugs are so much smaller than the computers as we know them 4:23 The computer is in fact so much bigger 4:25 it's about a hundred million times bigger that any drug molecule. 4:28 Our nanobots which were in the syringe 4:31 solve this problem because they are in fact 4:34 computers the size of molecules. 4:36 and they can interact with molecules 4:38 and they can control molecules directly, 4:40 so just think about all those 4:42 drugs that have been withdrawn from the market 4:45 for excessive toxicity 4:46 right? 4:47 It doesn't mean that they are not effective, 4:49 they were amazingly effective, 4:51 they were just guns shooting in all directions 4:53 but in the hands of a well-trained soldier 4:56 or a well-programed nanobot 4:58 using all the existing drugs 5:01 we could hypothetically kill almost any disease. 5:05 So we might not need even new drugs. 5:07 We have amazing drugs already, 5:09 we just don't know how to control them, this is the problem 5:11 and our nanobots... 5:13 hopefully solve this problem and I'll show you how. 5:15 So there is an interesting question "how do we build 5:19 a robot or a machine the size of a molecule?" 5:21 so the simple answer would be: we can use molecules 5:25 to build this machine. 5:26 So we're using molecules, but we're not using just any molecule. 5:30 We're using the perfect, most beautiful molecule on earth, at least in my opinion, 5:34 which is DNA. 5:36 And in fact every part of the robot, 5:38 every part of out nanorobots: 5:40 Moving parts, axis, locks, chasis, software, 5:44 everything is made from DNA molecules. 5:46 And the techonology that enables us to do this 5:49 originated thirty years ago when the pioneering works of Nadrian Seeman, 5:52 culminating 7 years ago in the works of Paul Rothemund from Caltech, 5:56 which was also featured in TED, 5:58 and it's called DNA origami. 5:59 Now in DNA origami we do not use a piece of paper, 6:02 we use a single long strand of DNA 6:05 and we fold it into virtually any shape we want. 6:08 For example these shapes, so these are actual microscopic images 6:12 of shapes the size of molecules that were folded from DNA. 6:16 so the smiley you see here in the center of the screen for example 6:19 are a hundred nanometers in size 6:21 and we make billions of them in few... in a single reaction. 6:24 Now since 2006 several researchers, really talented ones, 6:28 have been expanding the limits of the technically feasible in DNA origami 6:32 and now we have an astonishig array of shapes and objects which we can build 6:35 using this technique. 6:36 And these researchers also gave us computer-aided design tools 6:41 that enable everyone 6:43 very very simply to design objects from DNA 6:46 So these CAD tools amazingly 6:49 enable us to focus o n the shape we want 6:52 forgetting the fact that these structures are in fact assemblies of molecules. 6:57 so this is for example a shape the computer can actually turn into DNA molecules. 7:02 and the output of this CAD software, as you can see, 7:05 is a spreadsheet with fragments of DNA 7:08 which you can attach to a message and send to a company 7:11 one of two dozen companies that make DNA by order and you'll get those DNA's 7:16 several days later to your doorstep 7:18 and when you get them all you need to do is just mix them in a certain way 7:23 and these molecular bricks will self-assemble into 7:26 millions of copies of the very structure that you designed using that CAD software 7:30 which is free by the way, you can download it for free. 7:34 So, let's have a look at our nanorobots. 7:38 So, this is how the nanorobots look like, it's built from DNA as you can see 7:42 And it resembles a clam shell in which you can put cargo 7:45 You can load anything you want starting from small molecules, drugs, 7:49 proteines, enzymes, even nano-particles. Virtually any function 7:54 that molecules can carry out, can be loaded into the nanobot 7:57 and the nanobot can be programmed to turn on and off 8:01 these functions at certain places and at certain times 8:05 this is how we control those molecules 8:07 and so this particular nanorobot is in an off state, it's closed,it's securely 8:12 sequestres anything, any payload you put inside 8:16 so it's not accessible to the outside of the robot, 8:18 for example, it cannot engage target cells or target tissues 8:22 But we can program the nanobot to switch to an on state 8:26 based on molecular cues it finds from the environment 8:30 so programming the robot is virtually like assemblying a combination lock 8:34 using disks that recognize digits, 8:37 but of course instead of digits we are assemblying disks that recognize molecules. 8:42 So these robots can turn from off to on and when they do 8:47 any cargo inside is now accessible, 8:49 it can attack target cells or target tissues 8:52 or other robots which you'll see later on. 8:54 And so we have robots that can switch from off to on 8:58 and off again, we can control their kinetics of transition. 9:02 We can control which payload becomes accessible at which time point 9:05 Let's see an example how these robots for example control a cancer drug 9:12 So what you can do is you can take nanobots, 9:14 you can put the nastiest cancer drug you may find 9:17 into the robots, even a cancer drug 9:19 that's been withdrawn because of excessive toxicity 9:23 Ok? When the robot is locked 9:25 and you put them in your mixture of healthy cells and tumor cells 9:29 nothing happens, no cell is affected, because the robot 9:32 safely sequesters those drugs inside. 9:35 When we unlock the robots 9:37 all cells die because the cargo inside the [robot] attacks anything on sight. 9:42 So all cells eventually die. In this case this is a fluorescent molecule 9:46 to help us see better the output. 9:48 But when we program the nanobots to search for tumor cells particulary, 9:53 so only the tumor cells 9:56 uh... only the tumor cells die because 9:59 the robot doesn't care about the bystander cells, about the healthy cells. 10:04 So it does not harm them at all. 10:06 And we have nanorobots in our lab that can target 10:09 about ten types of cancer already and other cell targets 10:12 and my team keeps expanding this range monthly. 10:17 So these are nanorobots and to another topic 10:22 organisms in nature, like bacteria and animals 10:26 have learned very early in evolution that working in a coordinated group 10:29 conveys advantage 10:31 and capabilities beyond those of the individual 10:34 and since we are interested in 10:36 very complex medical procedures, very complex therapeutic settings, 10:40 we're wondering what we could do 10:42 if we could engineer artificial swarm behaviors 10:46 into our nanobots as well so we could have extraordinarily large groups of nanobots 10:51 Can we teach them to behave like animals, like insects 10:55 and how do you do this? So the question is interesting. 10:58 So you could think one way to do it would be 11:01 to look at a natural swarm like this one of fish 11:04 and simulate the dynamics of the entire swarm and then try to write the codes 11:09 in molecules of course 11:10 that mimic the same behaviour 11:12 this is virtually impossible, it's impractical 11:15 what we do is we take the single fish or a single nanobot in our case 11:20 and you design a very basic set of interaction rules 11:23 and then you take this one, this nanobot, you make a billion copies of it 11:27 and you let the behaviours emerge from that group 11:31 let me show you some examples of the things we can already do 11:35 for example, just as ants 11:38 can shake hands and form physical bridges between two trees 11:42 or two remote parts of the same tree, 11:44 we already have nanorobots that can reach out for each other 11:47 touch each other and shake hands in such a way 11:49 they form physical bridges. 11:51 Then you can imagine these robots 11:53 extending, making bridges extending from one-half 11:56 to the other half of an injured tissue, 11:58 an injured spinal cord for example 12:00 or an injured leg in the case of Dana, my daughter 12:03 and once they stretched over that tissue gap 12:06 they can apply growth factors, as payloads, and those growth factors 12:10 stimulate the re-growth and guide re-growth of cells across the gap. 12:14 So we already did that and... 12:17 we have robots that can cross regulate each other just like animals do in groups 12:21 and this is amazing because as you can see here 12:24 you can have two types of robots, Type-A and Type-B 12:28 they can cross regulate each other, such that "A" is active 12:32 while "B" is not and viceversa. 12:34 So this is good for combination therapy 12:36 with combination therapy we take multiple drugs, right? 12:39 and sometimes two or more of these drugs 12:41 can collide and generate side effects, 12:43 but here you can put one drug here, one drug here 12:46 and the robots will time the activities so that 12:49 one drug is active, the other is not and then they can switch 12:52 and so two or more drugs can operate at the same time without actually colliding. 12:57 Another example that we did is the quorum sensing. 13:00 Now quorum sensing is great, it's a bacterial inspired behaviour 13:05 It means nanorobots can count themselves 13:08 and they can switch to "on" only when reaching a certain population size 13:12 this is a mechanism invented by bacteria in evolution 13:15 and they regulate amazing behaviours based on just their population density 13:18 for example, bioluminescence, this one of the well-studied examples 13:23 so our robots can count themselves and switch to on 13:26 only when reaching a certain population size which we can program. 13:29 This is great because this is a mechanism of programming a drug 13:33 to become active only when reaching a certain dose 13:36 around the target, regardless of its inherent dose-response curve. 13:41 One last I'm gonna show to you is computing, 13:43 so this nanobots can do computing. 13:45 How's so? If you think about your computer at home, 13:48 the processor of the computer is in fact a gigantic swarm of transistors 13:53 In an i7 core for example you have 800 million transistors approximately 13:58 and they're set to interact in certain ways to produce logic gates 14:02 and these logic gates are set to interact to produce computations 14:05 so we can also produce computation by setting interactions between nanorobots 14:10 to emulate logic gates like you see here 14:13 and they form chains and they form pairs 14:15 and my team in Bar-Ilan University [has] already developed several architectures 14:19 of computing based on interacting nanorobots 14:22 and to prototype these 14:24 we are using animals, very interesting animals 14:27 these are cockroaches, 14:28 they are very easy to work with, the're very sweet, 14:30 they're actually from South America 14:32 and I'm a Soutamerican myself so I fell kinda related 14:35 [Laughter] 14:36 And hum... so what we do is we inject those robots into the cockroach 14:40 and to do that we of course had to put the cockroaches to sleep 14:43 have you ever tried putting cockroach to sleep? 14:46 We put in the freezer for seven minutes 14:48 in they fall asleep 14:49 and we can inject these nanorobots inside 14:52 and after 20 minutes they start running around, they're happy. 14:55 And those robots 14:57 while they're doing this, the robots read molecules 14:59 from the cockroaches' inputs 15:01 and they write their outputs in the form of drugs 15:04 activated on those cockroaches' cells 15:06 so we can do, we can see that and we already have, as you can see, 15:09 architectures of interecting nanorobots that can emulate logical operators 15:14 and you can use these as modular parts to build any type universal computer you want 15:19 [....] 15:21 that can control multiple drugs simultaneously 15:25 as a result of biocomputing, this is real universal computing in a living animal. 15:30 Now we already have systems that have [the] computing capacity 15:33 of an 8-bit computer like Commodore 64. 15:36 To make sure we don't lose control over the nanobots after they're injected 15:40 my team [has] developed nanorobots that carry antennae 15:44 these antennae are made from metal nano-particles. 15:47 Now, the antennae enable the nanobots 15:49 to respond to externally applied electromagnetic fields 15:52 so these nanorobots, this version of nanobots 15:55 can actually be activated with a press of a button on a joystick 15:58 or for example using a controller 16:01 such as the Xbox or Wii if you ever had the chance of playing with those 16:05 and you can see one of my students in the lab configuring an Xbox app 16:09 to control nanobots. 16:11 For example you can imagine nanorobots being injected 16:14 to Dana, my daughter for example, 16:16 and the doctor can guide those robots 16:19 into the site, into the leg and just activate them with a hand gesture. 16:23 And you can already see an example where we actually took 16:26 cancer cells and loaded robots with cancer drugs 16:29 and activated the drug by a hand gesture. 16:31 and we can actually kill cancer cells just by doing this, 16:34 as you can see here. 16:36 And the interesting thing is that 16:39 because the controller like the Xbox is connected to the internet, 16:44 the controller actually links those nanobots to the network 16:47 so they have an actual IP address 16:49 and they can be accessed from a remote device sitting on the same network, 16:53 for example, my doctor's smartphone 16:55 So, OK?, just like controlling a controller, this can be done. 17:00 The last thing I'm gonna show is, if you look at our body 17:04 you'll see that every cell type, every organ, every tissue 17:08 has their own unique molecular signature 17:11 and this is equivalent to a physical IP address made of molecules 17:15 and if you know these molecules 17:17 you can use those nanobots to browse the Organism Wide Web, as we call it 17:21 and you can program them to look for bits, 17:23 this could be for example signally molecules between cells, 17:26 and either fetch them for diagnostics 17:28 or carry them to different addresses. 17:30 And we already have robots that can hijack 17:33 signals between cells 17:34 and manipulate an entire network of communications between cells 17:37 and this is great for controlling very complex diseases in which many cell types 17:43 communicate and orchestrate to perpetuate a disease. 17:46 So before I finish I'd just like to thank 17:50 my amazing team at Bar-Ilan University 17:52 and all the colleagues that took part in this extraordinary journey, 17:55 starting from the George Chuch's Lab in Harvard 17:57 and ending today in Bar-Ilan University in the new Faculty of Life Sciences, 18:01 and I really hope that 18:03 anywhere between a year and five years from now 18:06 we'll be able to use this in humans 18:08 and finally witness the emergence of nanobot society. 18:11 Thank you very much. https://www.digitaltrends.com/cool-tech/nanobots-live-cockroach-thought-control/ https://www.digitaltrends.com/cool-tech/nanobots-live-cockroach-thought-control/ https://www.timesofisrael.com/israeli-scientists-use-nanobots-and-thoughts-to-administer-drugs/ Israeli scientists say they have come up with a way for brain power to control when drugs are released into the body, by using tiny robots made out of DNA to deliver the medication internally. Researchers at the Interdisciplinary Center in Herzliya and Bar-Ilan University in Ramat Gan have built the nanobots to which medication is attached and then are injected into the body. The nanobots have a “gate” that opens or closes — thereby controlling drug release — depending on brain activity. In order to achieve this, the New Scientist magazine said, the researchers developed a computer algorithm that could tell whether a person’s brain was resting or carrying out some form of mental activity, such as math problems. A fluorescent-tinted drug was then added to the nanobots, which were injected into a cockroach placed inside an electromagnetic coil. Israeli scientists say they have come up with a way for brain power to control when drugs are released into the body, by using tiny robots made out of DNA to deliver the medication internally. This coil was then connected to an EEG cap worn by a person asked to perform mental calculations. The computer recognized increased brain activity by the cap wearer, which triggered the “gate” on the nanobots inside the cockroach, releasing the fluorescent drug that was visible as it spread through the insect’s body. The idea is to use the delivery system for people with mental health issues, which are sometimes triggered before sufferers are aware they need medication. By monitoring brain activity, the nanobots could deliver the required preventative drugs automatically, for example before a violent episode of schizophrenia. https://www.newscientist.com/article/2102463-mind-controlled-nanobots-could-release-drugs-inside-your-brain/ The group has built nanorobots out of DNA, forming shell-like shapes that drugs can be tethered to. The bots also have a gate, which has a lock made from iron oxide nanoparticles. The lock opens when heated using electromagnetic energy, exposing the drug to the environment. Because the drug remains tethered to the DNA parcel, a body’s exposure to the drug can be controlled by closing and opening the gate. By examining when fluorescence appeared inside different cockroaches, the team confirmed that this worked. The idea would be to automatically trigger the release of a drug when it is needed. For example, some people don’t always know when they need medication – before a violent episode of schizophrenia, for instance. If an EEG could detect it was coming, it could stimulate the release of a preventative drug. https://www.youtube.com/watch?v=BxJPceCV51g Nanobots Successfully Used on Living Animal for the First Time - IGN News 0:38 to treat human ailments or weaponized 0:40 hijacked by a snake themed terrorist 0:42 organization and then used to destroy 0:43 Paris but I suppose it's only a matter 0:45 of time “This syringe has inside it a thousand billion robots.” https://outraged.substack.com/p/the-emergence-of-nanobot-society?utm_source=cross-post&publication_id=1087020&post_id=143145132&utm_campaign=956088&isFreemail=true&r=1sq9d8&triedRedirect=true&utm_medium=email Follow @zeeemedia Website | X | Instagram | Rumble https://donshafi911.blogspot.com/2024/04/the-emergence-of-nanobot-society.html
    OUTRAGED.SUBSTACK.COM
    The emergence of nanobot society
    So, they injected it into the military, police, emergency services.... Now everyone is injected with a device with a "real IP ADDRESS".... Thanks for reading OUTRAGED’s Newsletter! Subscribe for free to receive new posts and support my work. 0:00 Thank you very much. So one word of notice before we begin,
    0 Kommentare 0 Anteile 30121 Ansichten
  • ‘Operation Al-Aqsa Flood’ Day 179: Israel kills 7 international aid workers in central Gaza, passes law banning Al Jazeera
    The World Central Kitchen called the attack that killed seven of its aid workers “unforgivable” as Israeli forces killed 71 people across the Gaza Strip. Meanwhile, the Israeli government voted to approve a bill banning Al Jazeera.

    Qassam MuaddiApril 2, 2024
    Palestinians inspect the heavily damaged vehicle after the Israeli attack targeting the international and local officials with the World Central Kitchen, Deir al-Balah, central Gaza, April 2, 2024. (Photo: Omar Ashtawy/APA Images)
    Palestinians inspect the heavily damaged vehicle after the Israeli attack targeting the international and local officials with the World Central Kitchen, Deir al-Balah, central Gaza, April 2, 2024. (Photo: Omar Ashtawy/APA Images)
    Casualties

    32,916+ killed* and at least 75,494 wounded in the Gaza Strip.
    451+ Palestinians killed in the occupied West Bank and East Jerusalem.**
    Israel revises its estimated October 7 death toll down from 1,400 to 1,139.
    600 Israeli soldiers have been killed since October 7, and at least 3,302 injured.***
    *Gaza’s Ministry of Health confirmed this figure on its Telegram channel. Some rights groups estimate the death toll to be much higher when accounting for those presumed dead.

    ** The death toll in the West Bank and Jerusalem is not updated regularly. According to the PA’s Ministry of Health on March 17, this is the latest figure.

    *** This figure is released by the Israeli military, showing the soldiers whose names “were allowed to be published.”

    Key Developments

    Israel kills 71 Palestinians and wounds 102 in the Gaza Strip in 7 different massacres, according to the Palestinian health ministry.
    Israeli army kills seven aid workers of British, Polish, and Australian nationalities belonging to the World Central Kitchen (WCK) in Deir al-Balah. WCK announces halt of operations in light of attack.
    Israeli government votes on a bill to ban Al Jazeera and other media outlets, Netanyahu accuses Al Jazeera of incitement against Israel.
    Gaza’s health ministry calls upon Palestinians to evacuate hospitals unless they are patients or wounded.
    In the West Bank, one Palestinian dies of wounds sustained during Israeli army raid in Jenin.
    Israeli army raids Qalandia refugee camp north of Jerusalem, arresting seven people.
    Israeli forces kill 71 Palestinians, wound 102 across Gaza

    The Palestinian health ministry in Gaza said in a statement Tuesday that Israeli forces committed seven massacres against families in the Gaza Strip since Monday, killing 71 Palestinians and wounding 102, bringing the death toll of Israel’s assault on the Gaza Strip since October 7 to 32,916.

    The ministry pointed out that medical teams haven’t been able to recover many more bodies buried under the rubble.

    In Gaza City, Israel’s withdrawal from al-Shifa Hospital revealed the total destruction of the medical complex and its facilities. Accounts from residents in the area describe dead bodies with tied hands, indicating potential cases of execution.

    In a statement, Gaza’s Government Media Office said that at least 400 Palestinians were killed and 900 were wounded during the two-week-long Israeli raid on Gaza’s largest hospital.

    In the central Gaza Strip, Israeli forces bombed the al-Bashir mosque, killing one child and wounding 20 more people. Israeli artillery also bombed the village of al-Mighraqa north of the Nuseirat refugee camp.

    In the southern Gaza Strip, two separate Israeli bombings killed 12 Palestinians in Rafah, including six people, in a bombing of the Zuurub family home. Meanwhile, Israeli artillery continued bombing the western neighborhoods of Khan Younis.

    Israeli strike kills seven international aid workers in Deir al-Balah

    Seven international aid workers were killed by an Israeli strike in Deir al-Balah, in the central Gaza Strip on Monday. The aid workers belonged to the U.S.-based international humanitarian organization, the World Central Kitchen.

    The victims were of British, Canadian, Polish, and Australian, nationalities, and some had dual U.S. and Palestinian citizenship.

    Passports of the international volunteers with the World Central Kitchen killed in a targeted Israeli airstrike, Deir al-Balah, central Gaza. (Photo: Omar Ashtawy/APA Images)
    Passports of the international volunteers with the World Central Kitchen killed in a targeted Israeli airstrike, Deir al-Balah, central Gaza. (Photo: Omar Ashtawy/APA Images)
    The World Central Kitchen said in a statement that its workers were leaving the organization’s warehouse in Deir al-Balah, moving through a “deconflicted zone” in three vehicles when the Israeli strike occurred, “despite coordinating movements” with the Israeli army.

    “This is an attack on humanitarian organizations showing up in the most dire of situations where food is being used as a weapon of war, this is unforgivable,” said the WCK statement. The organization also announced the suspension of its operations in the Gaza Strip.

    The World Central Kitchen had been engaged in delivering meals to Palestinians in the besieged Gaza strip, where the UN has warned of famine induced by Israel’s blocking of humanitarian aid from entering the Strip. At least 31 people have died of starvation.

    Australian Prime Minister Anthony Albanese confirmed the death of a 44-year-old Australian citizen among the team, calling the killing “completely unacceptable.” Albanese also said that his cabinet will call in Israel’s ambassador.

    Israeli media quoted the Israeli army as saying that it will open an investigation into the incident.

    Since October 7, Israeli strikes killed at least 170 international humanitarian workers in the Gaza Strip, according to Human Rights Watch.

    Israeli government votes bill into law banning Al Jazeera

    Israeli Prime Minister Benjamin Netanyahu vowed Monday to shut down the Qatari media network Al Jazeera’s operations in Palestine soon.

    The law, dubbed the “Al Jazeera law,” was introduced after the Israeli army claimed it found one Al Jazeera worker to be a member of Hamas, without providing more details.

    The law sets the ground for the Israeli war cabinet to put a ban on the Qatari media network into effect. However, according to the Israeli daily newspaper Israel Hayom, Netanyahu and his cabinet “are not in a rush” to ban Al Jazeera from broadcasting, given Qatar’s role in mediating negotiations with Hamas.

    On Monday, Netanyahu accused Al Jazeera of incitement against Israel and “actively taking part in the October 7 attack.”

    Since October 7, Israeli strikes have killed 139 journalists in the Gaza Strip, including Al Jazeera cameraman Samer Abu Daqa. Back in December, only two months into Israel’s assault on Gaza, the Committee for the Protection of Journalists said that the Strip was the most dangerous place for journalists in the world.

    One Palestinian killed in Jenin as Israel continues raids across the West Bank

    A Palestinian was pronounced dead in Jenin on Tuesday after succumbing to his wounds caused earlier by Israeli forces during a military raid on the town of Qabatiya, south of Jenin.

    The martyr was identified as 20-year-old Rabea Faisal Zakarna, who was wounded on Saturday by Israeli forces that raided his town.

    Meanwhile, Israeli forces raided the Qalandia refugee camp north of Jerusalem late on Monday, where they were confronted by local youth throwing stones as well as armed clashes with Palestinian fighters. The Palestinian Red Crescent Society reported several injuries in Qalandia by Israeli fire.

    Across the West Bank, Israeli forces raided several towns in the Nablus, Hebron, and Jericho governorates, arresting at least 40 Palestinians, according to the Palestinian Prisoners’ Club.

    Since October 7, Israel has arrested more than 7,600 Palestinians. Currently, Israel continues to hold 9,100 Palestinians in its jails, including 50 women, 200 children, and at least 3,500 detainees without charge or trial as part of its policy of administrative detention.

    With the death of Rabea Zakarneh, the number of Palestinians killed by Israeli forces in the West Bank rose to 456 since October 7 and 139 since the beginning of the year.

    https://mondoweiss.net/2024/04/operation-al-aqsa-flood-day-179-israel-kills-7-international-aid-workers-in-central-gaza-passes-law-banning-al-jazeera/
    ‘Operation Al-Aqsa Flood’ Day 179: Israel kills 7 international aid workers in central Gaza, passes law banning Al Jazeera The World Central Kitchen called the attack that killed seven of its aid workers “unforgivable” as Israeli forces killed 71 people across the Gaza Strip. Meanwhile, the Israeli government voted to approve a bill banning Al Jazeera. Qassam MuaddiApril 2, 2024 Palestinians inspect the heavily damaged vehicle after the Israeli attack targeting the international and local officials with the World Central Kitchen, Deir al-Balah, central Gaza, April 2, 2024. (Photo: Omar Ashtawy/APA Images) Palestinians inspect the heavily damaged vehicle after the Israeli attack targeting the international and local officials with the World Central Kitchen, Deir al-Balah, central Gaza, April 2, 2024. (Photo: Omar Ashtawy/APA Images) Casualties 32,916+ killed* and at least 75,494 wounded in the Gaza Strip. 451+ Palestinians killed in the occupied West Bank and East Jerusalem.** Israel revises its estimated October 7 death toll down from 1,400 to 1,139. 600 Israeli soldiers have been killed since October 7, and at least 3,302 injured.*** *Gaza’s Ministry of Health confirmed this figure on its Telegram channel. Some rights groups estimate the death toll to be much higher when accounting for those presumed dead. ** The death toll in the West Bank and Jerusalem is not updated regularly. According to the PA’s Ministry of Health on March 17, this is the latest figure. *** This figure is released by the Israeli military, showing the soldiers whose names “were allowed to be published.” Key Developments Israel kills 71 Palestinians and wounds 102 in the Gaza Strip in 7 different massacres, according to the Palestinian health ministry. Israeli army kills seven aid workers of British, Polish, and Australian nationalities belonging to the World Central Kitchen (WCK) in Deir al-Balah. WCK announces halt of operations in light of attack. Israeli government votes on a bill to ban Al Jazeera and other media outlets, Netanyahu accuses Al Jazeera of incitement against Israel. Gaza’s health ministry calls upon Palestinians to evacuate hospitals unless they are patients or wounded. In the West Bank, one Palestinian dies of wounds sustained during Israeli army raid in Jenin. Israeli army raids Qalandia refugee camp north of Jerusalem, arresting seven people. Israeli forces kill 71 Palestinians, wound 102 across Gaza The Palestinian health ministry in Gaza said in a statement Tuesday that Israeli forces committed seven massacres against families in the Gaza Strip since Monday, killing 71 Palestinians and wounding 102, bringing the death toll of Israel’s assault on the Gaza Strip since October 7 to 32,916. The ministry pointed out that medical teams haven’t been able to recover many more bodies buried under the rubble. In Gaza City, Israel’s withdrawal from al-Shifa Hospital revealed the total destruction of the medical complex and its facilities. Accounts from residents in the area describe dead bodies with tied hands, indicating potential cases of execution. In a statement, Gaza’s Government Media Office said that at least 400 Palestinians were killed and 900 were wounded during the two-week-long Israeli raid on Gaza’s largest hospital. In the central Gaza Strip, Israeli forces bombed the al-Bashir mosque, killing one child and wounding 20 more people. Israeli artillery also bombed the village of al-Mighraqa north of the Nuseirat refugee camp. In the southern Gaza Strip, two separate Israeli bombings killed 12 Palestinians in Rafah, including six people, in a bombing of the Zuurub family home. Meanwhile, Israeli artillery continued bombing the western neighborhoods of Khan Younis. Israeli strike kills seven international aid workers in Deir al-Balah Seven international aid workers were killed by an Israeli strike in Deir al-Balah, in the central Gaza Strip on Monday. The aid workers belonged to the U.S.-based international humanitarian organization, the World Central Kitchen. The victims were of British, Canadian, Polish, and Australian, nationalities, and some had dual U.S. and Palestinian citizenship. Passports of the international volunteers with the World Central Kitchen killed in a targeted Israeli airstrike, Deir al-Balah, central Gaza. (Photo: Omar Ashtawy/APA Images) Passports of the international volunteers with the World Central Kitchen killed in a targeted Israeli airstrike, Deir al-Balah, central Gaza. (Photo: Omar Ashtawy/APA Images) The World Central Kitchen said in a statement that its workers were leaving the organization’s warehouse in Deir al-Balah, moving through a “deconflicted zone” in three vehicles when the Israeli strike occurred, “despite coordinating movements” with the Israeli army. “This is an attack on humanitarian organizations showing up in the most dire of situations where food is being used as a weapon of war, this is unforgivable,” said the WCK statement. The organization also announced the suspension of its operations in the Gaza Strip. The World Central Kitchen had been engaged in delivering meals to Palestinians in the besieged Gaza strip, where the UN has warned of famine induced by Israel’s blocking of humanitarian aid from entering the Strip. At least 31 people have died of starvation. Australian Prime Minister Anthony Albanese confirmed the death of a 44-year-old Australian citizen among the team, calling the killing “completely unacceptable.” Albanese also said that his cabinet will call in Israel’s ambassador. Israeli media quoted the Israeli army as saying that it will open an investigation into the incident. Since October 7, Israeli strikes killed at least 170 international humanitarian workers in the Gaza Strip, according to Human Rights Watch. Israeli government votes bill into law banning Al Jazeera Israeli Prime Minister Benjamin Netanyahu vowed Monday to shut down the Qatari media network Al Jazeera’s operations in Palestine soon. The law, dubbed the “Al Jazeera law,” was introduced after the Israeli army claimed it found one Al Jazeera worker to be a member of Hamas, without providing more details. The law sets the ground for the Israeli war cabinet to put a ban on the Qatari media network into effect. However, according to the Israeli daily newspaper Israel Hayom, Netanyahu and his cabinet “are not in a rush” to ban Al Jazeera from broadcasting, given Qatar’s role in mediating negotiations with Hamas. On Monday, Netanyahu accused Al Jazeera of incitement against Israel and “actively taking part in the October 7 attack.” Since October 7, Israeli strikes have killed 139 journalists in the Gaza Strip, including Al Jazeera cameraman Samer Abu Daqa. Back in December, only two months into Israel’s assault on Gaza, the Committee for the Protection of Journalists said that the Strip was the most dangerous place for journalists in the world. One Palestinian killed in Jenin as Israel continues raids across the West Bank A Palestinian was pronounced dead in Jenin on Tuesday after succumbing to his wounds caused earlier by Israeli forces during a military raid on the town of Qabatiya, south of Jenin. The martyr was identified as 20-year-old Rabea Faisal Zakarna, who was wounded on Saturday by Israeli forces that raided his town. Meanwhile, Israeli forces raided the Qalandia refugee camp north of Jerusalem late on Monday, where they were confronted by local youth throwing stones as well as armed clashes with Palestinian fighters. The Palestinian Red Crescent Society reported several injuries in Qalandia by Israeli fire. Across the West Bank, Israeli forces raided several towns in the Nablus, Hebron, and Jericho governorates, arresting at least 40 Palestinians, according to the Palestinian Prisoners’ Club. Since October 7, Israel has arrested more than 7,600 Palestinians. Currently, Israel continues to hold 9,100 Palestinians in its jails, including 50 women, 200 children, and at least 3,500 detainees without charge or trial as part of its policy of administrative detention. With the death of Rabea Zakarneh, the number of Palestinians killed by Israeli forces in the West Bank rose to 456 since October 7 and 139 since the beginning of the year. https://mondoweiss.net/2024/04/operation-al-aqsa-flood-day-179-israel-kills-7-international-aid-workers-in-central-gaza-passes-law-banning-al-jazeera/
    MONDOWEISS.NET
    ‘Operation Al-Aqsa Flood’ Day 179: Israel kills 7 international aid workers in central Gaza, passes law banning Al Jazeera
    The World Central Kitchen called the attack that killed seven of its aid workers “unforgivable” as Israeli forces killed 71 people across the Gaza Strip. Meanwhile, the Israeli government voted to approve a bill banning Al Jazeera.
    Sad
    1
    0 Kommentare 0 Anteile 15396 Ansichten
  • Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics
    Ana Maria Mihalcea, MD, PhD

    Morphology and composition of incrustants in different conditions. (a) Scanning electron microscopic (SEM) images of bare-polystyrene (PS, 1 μm, 1 mg L–1) and incrustant coprecipitates formed in tap water at different temperatures (180 mg L–1 of CaCO3, 40 mL, 25–100 oC); (b) SEM images of bare-PS (1 μm, 1 mg L–1) and incrustant coprecipitates in different water hardness upon boiling (60–300 mg L–1 of CaCO3, 100 oC); (c) SEM images of bare-PS and incrustant coprecipitates in different PS concentrations (1 μm, 0–5 mg L–1) upon boiling of tap water (180 mg L–1 of CaCO3, 100 oC); and (d) SEM images and (e) X-ray diffraction patterns of bare-, carboxyl-, and amino-PS and incrustant coprecipitates upon boiling of tap water (1 and 0.1 μm, 1 mg L–1, 180 mg L–1 of CaCO3, 100 oC).

    ____________________________________________________________________________

    This is a hopeful article explaining the methodology to decontaminate drinking water. This is very important because we do know that all bottled water is contaminated. You can read that study here:

    Study Shows A Quarter Million Nanoparticle Polymers Per Liter In Water Bottles - Same Polymers Found As In Moderna Patent For Covid 19 Shots, Morgellons Filaments, Blood & Rubbery Clots

    The abstract states:

    Tap water nano/microplastics (NMPs) escaping from centralized water treatment systems are of increasing global concern, because they pose potential health risk to humans via water consumption. Drinking boiled water, an ancient tradition in some Asian countries, is supposedly beneficial for human health, as boiling can remove some chemicals and most biological substances. However, it remains unclear whether boiling is effective in removing NMPs in tap water. Herein we present evidence that polystyrene, polyethylene, and polypropylene NMPs can coprecipitate with calcium carbonate (CaCO3) incrustants in tap water upon boiling. Boiling hard water (>120 mg L–1 of CaCO3) can remove at least 80% of polystyrene, polyethylene, and polypropylene NMPs size between 0.1 and 150 μm. Elevated temperatures promote CaCO3 nucleation on NMPs, resulting in the encapsulation and aggregation of NMPs within CaCO3 incrustants. This simple boiling-water strategy can “decontaminate” NMPs from household tap water and has the potential for harmlessly alleviating human intake of NMPs through water consumption.


    Here is the ACS article:

    Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics

    Here is the sciencedaily write up:

    Want fewer microplastics in your tap water? Try boiling it first

    Contamination of water supplies with nano- and microplastics (NMPs), which can be as small as one thousandth of a millimeter in diameter or as large as 5 millimeters, has become increasingly common. The effects of these particles on human health are still under investigation, though current studies suggest that ingesting them could affect the gut microbiome. Some advanced drinking water filtration systems capture NMPs, but simple, inexpensive methods are needed to substantially help reduce human plastic consumption. So, Zhanjun Li, Eddy Zeng and colleagues wanted to see whether boiling could be an effective method to help remove NMPs from both hard and soft tap water.

    The researchers collected samples of hard tap water from Guangzhou, China, and spiked them with different amounts of NMPs. Samples were boiled for five minutes and allowed to cool. Then, the team measured the free-floating plastic content. Boiling hard water, which is rich in minerals, will naturally form a chalky substance known as limescale, or calcium carbonate (CaCO3). Results from these experiments indicated that as the water temperature increased, CaCO3 formed incrustants, or crystalline structures, which encapsulated the plastic particles. Zeng says that over time, these incrustants would build up like typical limescale, at which point they could be scrubbed away to remove the NMPs. He suggests any remaining incrustants floating in the water could be removed by pouring it through a simple filter such as a coffee filter.

    In the tests, the encapsulation effect was more pronounced in harder water -- in a sample containing 300 milligrams of CaCO3 per liter of water, up to 90% of free-floating MNPs were removed after boiling. However, even in soft water samples (less than 60 milligrams CaCO3 per liter), boiling still removed around 25% of NMPs. The researchers say that this work could provide a simple, yet effective, method to reduce NMP consumption.

    From the paper supplemental information

    Results. Boiling hard water can remove most PS, PE, and PP MPs, and PS, PE, and PP MPs precipitation efficiencies were 95 ± 4%, 81 ± 3%, and 90 ± 3%, respectively, at 100 oC. Increasing temperature accelerated the formation of incrustants on spherical, fragmented, and fibrous MP surfaces. MPs continued to be encapsulated by newly formed incrustants (Figure S2) and finally precipitated under gravity, confirming that spherical PS, fragmented PE, and fibrous PP MPs are able to coprecipitate with incrustants in tap water upon boiling. In concluding, the results with NPs in the main text were also applicable to MPs.

    Here are the polymer plastics found in drinking water throughout the world:



    Thank you to Karen Kingston, who brought this article to my attention.

    https://anamihalceamdphd.substack.com/p/drinking-boiled-tap-water-reduces

    https://telegra.ph/Drinking-Boiled-Tap-Water-Reduces-Human-Intake-of-Nanoplastics-and-Microplastics-04-02
    Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics Ana Maria Mihalcea, MD, PhD Morphology and composition of incrustants in different conditions. (a) Scanning electron microscopic (SEM) images of bare-polystyrene (PS, 1 μm, 1 mg L–1) and incrustant coprecipitates formed in tap water at different temperatures (180 mg L–1 of CaCO3, 40 mL, 25–100 oC); (b) SEM images of bare-PS (1 μm, 1 mg L–1) and incrustant coprecipitates in different water hardness upon boiling (60–300 mg L–1 of CaCO3, 100 oC); (c) SEM images of bare-PS and incrustant coprecipitates in different PS concentrations (1 μm, 0–5 mg L–1) upon boiling of tap water (180 mg L–1 of CaCO3, 100 oC); and (d) SEM images and (e) X-ray diffraction patterns of bare-, carboxyl-, and amino-PS and incrustant coprecipitates upon boiling of tap water (1 and 0.1 μm, 1 mg L–1, 180 mg L–1 of CaCO3, 100 oC). ____________________________________________________________________________ This is a hopeful article explaining the methodology to decontaminate drinking water. This is very important because we do know that all bottled water is contaminated. You can read that study here: Study Shows A Quarter Million Nanoparticle Polymers Per Liter In Water Bottles - Same Polymers Found As In Moderna Patent For Covid 19 Shots, Morgellons Filaments, Blood & Rubbery Clots The abstract states: Tap water nano/microplastics (NMPs) escaping from centralized water treatment systems are of increasing global concern, because they pose potential health risk to humans via water consumption. Drinking boiled water, an ancient tradition in some Asian countries, is supposedly beneficial for human health, as boiling can remove some chemicals and most biological substances. However, it remains unclear whether boiling is effective in removing NMPs in tap water. Herein we present evidence that polystyrene, polyethylene, and polypropylene NMPs can coprecipitate with calcium carbonate (CaCO3) incrustants in tap water upon boiling. Boiling hard water (>120 mg L–1 of CaCO3) can remove at least 80% of polystyrene, polyethylene, and polypropylene NMPs size between 0.1 and 150 μm. Elevated temperatures promote CaCO3 nucleation on NMPs, resulting in the encapsulation and aggregation of NMPs within CaCO3 incrustants. This simple boiling-water strategy can “decontaminate” NMPs from household tap water and has the potential for harmlessly alleviating human intake of NMPs through water consumption. Here is the ACS article: Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics Here is the sciencedaily write up: Want fewer microplastics in your tap water? Try boiling it first Contamination of water supplies with nano- and microplastics (NMPs), which can be as small as one thousandth of a millimeter in diameter or as large as 5 millimeters, has become increasingly common. The effects of these particles on human health are still under investigation, though current studies suggest that ingesting them could affect the gut microbiome. Some advanced drinking water filtration systems capture NMPs, but simple, inexpensive methods are needed to substantially help reduce human plastic consumption. So, Zhanjun Li, Eddy Zeng and colleagues wanted to see whether boiling could be an effective method to help remove NMPs from both hard and soft tap water. The researchers collected samples of hard tap water from Guangzhou, China, and spiked them with different amounts of NMPs. Samples were boiled for five minutes and allowed to cool. Then, the team measured the free-floating plastic content. Boiling hard water, which is rich in minerals, will naturally form a chalky substance known as limescale, or calcium carbonate (CaCO3). Results from these experiments indicated that as the water temperature increased, CaCO3 formed incrustants, or crystalline structures, which encapsulated the plastic particles. Zeng says that over time, these incrustants would build up like typical limescale, at which point they could be scrubbed away to remove the NMPs. He suggests any remaining incrustants floating in the water could be removed by pouring it through a simple filter such as a coffee filter. In the tests, the encapsulation effect was more pronounced in harder water -- in a sample containing 300 milligrams of CaCO3 per liter of water, up to 90% of free-floating MNPs were removed after boiling. However, even in soft water samples (less than 60 milligrams CaCO3 per liter), boiling still removed around 25% of NMPs. The researchers say that this work could provide a simple, yet effective, method to reduce NMP consumption. From the paper supplemental information Results. Boiling hard water can remove most PS, PE, and PP MPs, and PS, PE, and PP MPs precipitation efficiencies were 95 ± 4%, 81 ± 3%, and 90 ± 3%, respectively, at 100 oC. Increasing temperature accelerated the formation of incrustants on spherical, fragmented, and fibrous MP surfaces. MPs continued to be encapsulated by newly formed incrustants (Figure S2) and finally precipitated under gravity, confirming that spherical PS, fragmented PE, and fibrous PP MPs are able to coprecipitate with incrustants in tap water upon boiling. In concluding, the results with NPs in the main text were also applicable to MPs. Here are the polymer plastics found in drinking water throughout the world: Thank you to Karen Kingston, who brought this article to my attention. https://anamihalceamdphd.substack.com/p/drinking-boiled-tap-water-reduces https://telegra.ph/Drinking-Boiled-Tap-Water-Reduces-Human-Intake-of-Nanoplastics-and-Microplastics-04-02
    ANAMIHALCEAMDPHD.SUBSTACK.COM
    Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics
    Morphology and composition of incrustants in different conditions. (a) Scanning electron microscopic (SEM) images of bare-polystyrene (PS, 1 μm, 1 mg L–1) and incrustant coprecipitates formed in tap water at different temperatures (180 mg L–1 of CaCO3, 40 mL, 25–100 oC); (b) SEM images of bare-PS (1 μm, 1 mg L–1) and incrustant coprecipitates in different water hardness upon boiling (60–300 mg L–1 of CaCO3, 100 oC); (c) SEM images of bare-PS and incrustant coprecipitates in different PS concentrations (1 μm, 0–5 mg L–1) upon boiling of tap water (180 mg L–1 of CaCO3, 100 oC); and (d) SEM images and (e) X-ray diffraction patterns of bare-, carboxyl-, and amino-PS and incrustant coprecipitates upon boiling of tap water (1 and 0.1 μm, 1 mg L–1, 180 mg L–1 of CaCO3, 100 oC).
    Like
    1
    0 Kommentare 1 Anteile 10144 Ansichten
  • W. M. Keck Observatory - Faintest Known Star System Orbiting The Milky Way Discovered From Hawaiʻi:

    https://keckobservatory.org/uma3-u1/

    #UrsaMajorIII #UNIONS1 #UMa3U1 #GravitationallyBound #LambdaColdDarkMatter #DarkMatter #LCDM #Cosmology #Astronomy
    W. M. Keck Observatory - Faintest Known Star System Orbiting The Milky Way Discovered From Hawaiʻi: https://keckobservatory.org/uma3-u1/ #UrsaMajorIII #UNIONS1 #UMa3U1 #GravitationallyBound #LambdaColdDarkMatter #DarkMatter #LCDM #Cosmology #Astronomy
    KECKOBSERVATORY.ORG
    Faintest Known Star System Orbiting the Milky Way Discovered from Hawaiʻi
    Exploring the universe from the one of the largest, most scientifically productive telescopes on Earth.
    0 Kommentare 0 Anteile 1462 Ansichten
Suchergebnis